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a b s t r a c t

Corrugated pipes are widely used because they combine local rigidity with global

flexibility. Whistling induced by flow through such pipes can lead to serious

environmental and structural problems. The whistling of a multiple side branch system

is compared to the whistling behavior of corrugated pipes. The study has been restricted

branch depth is chosen to be equal to the side branch diameter, which corresponds to

cavity geometries in typical corrugated pipes. The low frequency resonance modes of

the multiple side branch system have been predicted by means of acoustic models, of

which the validity has been tested experimentally. Several experiments have been

carried out for characterizing the whistling behavior of the system. While the behavior

of a multiple side branch system is interesting on its own it can be compared to that of

corrugated pipes. These experiments show that the multiple side branch system is in

many aspects a reasonable model for corrugated pipes. Advantage of the multiple side

branch system is that it is an experimental setup allowing easy modification of cavity

depth. We used this feature to identify the pressure nodes of the acoustic standing wave

along the main pipe as the regions where sound is produced. This contradicts recent

publications on corrugated pipes. Another interesting aspects is that the system appears

to whistle at the second hydrodynamic mode of the cavities rather than at the first

hydrodynamic mode. A prediction model for the whistling behavior is proposed,

consisting of an energy balance, based on the vortex sound theory. The model predicts

the observed Strouhal number but overestimates the acoustic fluctuation amplitude by

a factor four.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Corrugated pipes are used as flexible risers in offshore natural gas production systems, vacuum cleaners, ventilation
systems and heat exchangers. Such pipes can display strong whistling driven by the flow through the pipe. The acoustic
field produced can induce, besides environmental noise problems, significant structural vibrations. Corrugated pipes can
also be used as toys or musical instruments [1–3].

Typical cross sections of corrugated pipes are shown in Fig. 1. The inner diameter oscillates periodically as we move
along the pipe. The wavelength of the corrugation is called the pitch l. In thin wall pipes the corrugations provide the pipe
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Fig. 1. Typical cross sections of corrugated pipes.

Fig. 2. Sharp edged corrugation geometry.
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some local rigidity, preventing collapse, while keeping its overall flexibility. In the following we will consider the particular
geometry for which the corrugation is sharp edged. The main pipe has a minimum diameter D. Each corrugation is a
rectangular shaped cavity of width W in the flow direction and depth H (Fig. 2).

The flow induced whistling in corrugated pipes has been subject of several studies. From literature it appears that some
characteristics of this phenomenon have been pointed out in almost all the experimental studies [1,2,4–12]. One
characteristic is the stepwise increase of the whistling frequency as a function of the flow velocity. The whistling
frequencies were found to be close to the acoustic resonance frequencies of the system. An interesting aspect, first observed
by Cermak [4], is that the fundamental frequency is difficult to excite. It has been suggested by Cadwell [9] that this was
due to the transition from laminar to turbulent flow and that whistling would only occur in turbulent flows. Another widely
observed characteristic is that optimal whistling occurs at frequencies f corresponding to a critical Strouhal number
SrL ¼ ðfLÞ=U based on the flow velocity U and a length scale L which can either be defined based on the corrugation pitch l or
on the corrugation cavity width W. Recent studies have demonstrated that the most suitable dimension to be used is the
corrugation cavity width W [10,11]. When at fixed cavity width, the distance between two corrugations is increased, the
critical Strouhal number SrW ¼ fW=U based on the cavity width does not change. This suggests that the sound production is
a local fluid dynamic phenomenon within a single cavity/side branch. This is supposed to be vortex shedding triggered by
the acoustic velocity fluctuation [6,8,10]. The critical Strouhal number increases according to Binnie [5] with increasing
width of the cavity W relative to the pipe diameter D from SrL ¼ 0:38 up to SrL ¼ 0:75. Unfortunately it is not clear for the
data of Binnie [5] whether the length L is chosen to be the pitch l or the cavity width W. A similar increase of critical
Strouhal number has been observed by Belfroid et al. [10] when the ratio of cavity volume to pipe volume was increased.

The passive acoustic response of corrugated pipes has been described by Binnie [5] as that of a pipe with periodically
placed closed side branches. Moreover he described analytically the acoustic wave behavior of the system in terms of plane
waves. The model of Nederveen [13] for closed tone holes in woodwinds provides a more accurate description of the
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acoustic wave behavior in the absence of main flow. For the acoustic response of a two-dimensional T-junction, Bruggeman
[14] provided extensive theoretical models and experimental data. A recent detailed theoretical study of the acoustics of
T-junctions has been carried out by Dubos et al. [15]. Dépollier et al. [16] studied the effect of irregularities in the depth
of the side branches, which induces Anderson localization. More recently Debut et al. [17] studied numerically the effect of
irregularities in the geometrical configuration on the whistling of a simplified model of corrugated pipes. A theoretical
model for the acoustic wave propagation in the presence of a main flow through corrugated pipes has been proposed by
Cummings, as reported by Elliot [18]. We will discuss this model more in detail later (Section 6.1).

In the present study we consider pipes with rigid walls, in that way excluding the possible coupling between flow
instabilities and wall vibrations. Such a fluid–structure coupling has been observed by Ziada and Bühlmann [8] for the case
of water flow through a corrugated pipe.

The hydrodynamic interaction between two successive cavities/side branches has been subject of several studies. Lange
and Ronneberger [19] and Aurégan and Leroux [20] studied this interaction for the case of ducts lined with a series of
equally spaced deep cavities. Ziada and Bülhmann [21] studied the hydrodynamic interaction between two side branches
in close proximity. In a study of the interaction between two Helmholtz resonators, Derks and Hirschberg [22] observed
that the hydrodynamic interaction becomes important for distances lower than the width of the cavity opening. In our
system the distance between two successive side branches is twice the side branch width, so that we do not expect strong
hydrodynamic interaction. Coupling is expected to be dominated by acoustic interaction.

The identification of the regions within the corrugated pipes where the sound is mainly produced is a matter of current
debate. Kristiansen and Wiik [11] concluded that the energy generation occurs in the region of acoustic pressure antinodes
and the energy absorption around the acoustic pressure nodes. They observed, however, that a short section of
corrugations will only produce sound effectively when placed at the inflow end of a long smooth pipe. This position
corresponds to an acoustic pressure node, which is in contradiction with their own conclusions.

There is extensive experience in our group (Fluid Dynamics Laboratory of the Department of Applied Physics, Eindhoven
University of Technology) with whistling of systems of one or two closed side branches [23–27]. In particular a theoretical model
based on vortex sound theory is available and has been confirmed by experiments. That was a stimulus to consider a multiple
side branch system as a model for corrugated pipes, evaluating similitudes and differences between these two systems.

In this paper we first shortly introduce the theory of vortex sound and the phenomenon of self-sustained acoustic
oscillations. We will explain then, using the aeroacoustic behavior of a cross configuration as example, the meaning of
acoustic and hydrodynamic modes. This is followed by the description of the shear layer instability as source of
unsteadiness acting as a source of sound. We will describe then the experimental setup used. This is followed by the study
of the passive acoustic response of the multiple side branch system. Thereafter we will describe how the acoustic flow
within a T-junction is related to the sound production. We will present then the experimental results on the whistling
behavior of the multiple side branch system. We propose an energy balance to predict the critical Strouhal number for
optimal whistling and the corresponding whistling amplitude. Finally we will identify the location of the regions of the
multiple side branch system where the sound is produced.

To our knowledge no model predicting the whistling amplitude of corrugated pipes is available from the literature. In
our model we used the acoustic source due to periodic vortex shedding as predicted by Hofmans [26]. He calculated the
flow field at a T-junction by using two-dimensional incompressible frictionless flow simulations. He furthermore evaluated
the sound sources applying the vortex sound theory [28] to the results of his simulations. This theory has severe
limitations. Predicting the Strouhal number for whistling appears to be reasonably easy, while an accurate prediction of the
whistling amplitude is not yet possible.

2. Vortex sound

A formal relationship between vortex shedding and sound generation has been established for free field conditions by
Powell [29] and generalized by Howe [30,31]. Howe [31] proposes to use a Helmholtz decomposition of the flow field ~u to
define the acoustic field:

~u ¼ rðj0 þj
0Þ þ r � ~c (1)

where j0 is a steady scalar potential, j0 is the unsteady scalar potential and ~c is the stream function. The acoustic field ~u 0

is defined as the unsteady irrotational part of the velocity field:

~u 0 ¼ rj0 (2)

The ambiguity in the Helmholtz decomposition is in practice removed by the boundary conditions which we impose to
the acoustic field.

We consider flows with high Reynolds number and low Mach number so that we can neglect friction and heat transfer.
Assuming a homentropic flow we can use the formulation of Crocco for the momentum equation:

q~u
qt
þrB ¼ �~o � ~u (3)

where B ¼ 1
2 j
~u

2
j þ
R

dp=r is the total enthalpy and ~o ¼ r � ~u is the vorticity.
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Fig. 3. Feedback loop characterizing the self-sustained oscillations (a) and double side branch system in cross configuration (b).
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At low Mach numbers we can neglect the convective effects on the propagation of sound waves. With this
approximation one finds

1

c2
0

q2B

qt2
�r2B ¼ r � ð~o � ~uÞ (4)

This corresponds to the assumption that the Coriolis force density ~f coriolis ¼ �r0ð~o � ~uÞ, where r0 is the fluid density, acts
as source of sound.

As proposed by Howe [31], the time-averaged acoustic source power /PsourceS can be estimated using the
approximation:

/PsourceS ¼ �r0

Z
V
ð~o � ~uÞ � ~u 0 dV

� �
(5)

where V is the volume in which ~o is not vanishing and the brackets / � � �S indicate time averaging.
The vorticity in a flow field is related to the forces acting on the flow, therefore it is related to the sound produced. One

can qualitatively understand this feature by considering the tone generated by a cylinder of diameter Dcyl in a steady cross
flow of velocity U. When we assume a potential flow around the cylinder, there is no net force applied by the flow on the
cylinder because of the symmetry of the flow field. Due to viscous effects a wake is formed, vorticity shedding occurs and
this breaks the symmetry. At high Reynolds numbers ReDcyl4102 instability of the wake is observed which results into
periodic vortex shedding with frequency fvk ¼ 0:2U=Dcyl. This so-called von Karman vortex street [32] is associated to an
oscillating lift force applied by the fluid on the cylinder. The reaction force of the cylinder to this lift force is the source of
sound of the associated whistling that was studied first by Strouhal [33].

It is essential to realize that the cylinder walls do not need to vibrate in order to generate the sound. However, if a
mechanical vibration of the cylinder is induced by the oscillating lift force this can significantly enhance the spatial
coherence of the vortex shedding along the cylinder and result into a stronger tone with a frequency which is a
compromise between the natural Strouhal vortex frequency fvkDcyl=U ¼ 0:2 and the mechanical resonance frequency.

A similar lock-in can occur with an acoustic standing wave (resonant mode) when the cylinder is confined in a duct
[34–36]. This enhances even more the sound radiation because the acoustic standing wave provides an improved radiation
impedance. The resulting high amplitude oscillation controls the vortex shedding. These kinds of flow pulsations are called
self-sustained oscillations. The global behavior of these oscillations can be described in terms of a feedback loop (Fig. 3a)
consisting of an amplifier (flow instability) coupled to a band filter (acoustic resonance).
3. Whistling of a cross configuration

The flow induced pulsations of double side branch systems in coaxial configuration have been subject of several studies
[21,24,25,27,37–39]. This configuration is obtained when two closed side branches of equal length Lsb and diameter Dsb are
placed opposite to each other along a main pipe (Fig. 3b). We use the aeroacoustic behavior of this relatively simple
configuration in order to introduce basic concepts such as hydrodynamic and acoustic modes.
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The amplitude of the acoustic pressure measured at the top of one closed side branch jpexp
0 j and the corresponding

whistling frequency f are presented as function of the main flow velocity U in Fig. 4a, as obtained by Kriesels et al. [25].
The different resonance modes, corresponding to acoustic standing waves with frequencies fn ffi ð2n� 1Þc0=ð4LsbÞ

ðn ¼ 1;2;3; . . .Þ are clearly observed in Fig. 4a. Only the odd modes are resonant because they have a pressure node at the
junction and therefore do not radiate into the main pipe.

The acoustic pressure jpexp
0 j presents distinct maxima at different critical Strouhal numbers based on the effective

cavity width SrWeff ¼ fWeff=U. The significant Strouhal number in problems concerning the aeroacoustic behavior of pipe
systems with closed side branches has been identified by Bruggeman et al. [23] to be based on the effective width of the
side branches Weff . For side branches with rectangular cross section, Weff is equal to the width of the side branches Wsb,
while for circular side branches of diameter Dsb, the effective width is the average width of the side branch cross section
Weff ¼ pDsb=4.

The first hydrodynamic mode m ¼ 1 corresponding to one vortex in the side branch opening (Fig. 4b) appears at a
Strouhal number SrWeff ffi 0:4. The convective velocity of the vortex is about Ucon ffi 0:4U [23], hence the travel time of the
vortex across the opening is one oscillation period. For the second hydrodynamic mode m ¼ 2 two vortices are present at
the same time in the opening of the side branch (Fig. 4b), the time needed by a vortex to travel across the junction is then
two oscillation periods and SrWeff ffi 0:8.

It appears that the sound source is the most effective when it is operating on the first hydrodynamic mode m ¼ 1. This
mode induces pulsation amplitudes which are usually one order of magnitude larger than the pulsations induced by higher
hydrodynamic modes, because it occurs at higher velocities than the higher hydrodynamic modes.

When increasing gradually the flow velocity higher order hydrodynamic modes are observed before observing the first
hydrodynamic mode. In Fig. 4a we clearly observe that increasing the flow velocity the second hydrodynamic mode m ¼ 2
is observed for each acoustic resonance ðn ¼ 1;2;3; . . .Þ before observing the first hydrodynamic mode m ¼ 1.

Self-sustained oscillations are due to instability of a feedback loop (Fig. 3a). One of the oscillation conditions
determining the whistling frequency f is

2pfWeff

Ucon
þDjac ¼ 2pm (6)

where Djac is the acoustic phase shift and the first term is the phase delay due to convection. The optimal oscillation
condition corresponds to acoustic resonance f ffi fn and implies in this case Djac ffi 0. By shifting the frequency f, the
system can reach any phase in the range �p=2oDjacop=2 which allows whistling within a finite velocity range (Fig. 4a)
for a given acoustic mode. However, if the resonator has a high quality factor, the frequency change is very small. We
therefore observe the typical stepwise increase in frequency shown in Fig. 4a.
Fig. 4. Acoustic measurements [25] and flow visualizations [24] of a double side branch system in cross configuration.
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Fig. 5. Amplification rate �aiys for a shear layer with finite thickness as a function of the Strouhal number based on the shear layer momentum thickness

Sry [41].
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4. The shear layer instability

The shear layer instability is the source of unsteadiness that acts as the amplifier in the feedback loop of Fig. 3a. The
growth of vortical disturbances in the shear layer that separates the main flow from the stagnant fluid has been extensively
studied by means of the linearized stability theory since Rayleigh [40]. The effect of finite momentum thickness of the
velocity profile of the mean flow on spatial amplification and convective velocity of hydrodynamic waves in an inviscid
parallel free shear layer is described by Michalke [41]. The predicted amplification is shown as a function of the Strouhal
number fys=U based on the shear layer momentum thickness ys in Fig. 5.

For low frequencies the theory predicts an integral amplification over one wavelength by a factor e2p. Furthermore the
theory predicts that for frequencies above:

fys

U
¼ 0:04 (7)

the perturbations are not amplified. So there is no instability for hydrodynamic wavelength lh ¼ 0:4U=f shorter than about
10 times the shear layer momentum thickness ys.

From this theory we can conclude that when the velocity is increased monotonically the highest hydrodynamic mode to
appear is determined by the critical ratio of hydrodynamic wavelength lh to momentum thickness ys discussed above.

The linear theory is correct as long as the disturbances are small. For large perturbations a roll-up of the shear layer is
observed, forming coherent structures of concentrated vorticity (Fig. 4b). This concentration of the vorticity of the shear
layer into discrete vortices is the nonlinear saturation mechanism which explains the stabilization of the feedback loop
oscillation at a finite whistling amplitude [23,42,43].

5. Experimental setup

5.1. General setup

The experimental setup is sketched in Fig. 6. The multiple side branch system is made up of equal T-joints connected to
each other, forming a row of equally spaced side branches along a main pipe (Fig. 7). The system is built up of T-junction
elements for vacuum appliances ISO-KF cast in aluminum. The main pipe of each T-joint has an internal diameter Dp ¼

33 mm and a length Lp ¼ 100 mm. The side branch is situated half-way on the main pipe segment of the T-joint. The
junction between the side branch and the main pipe has sharp edges. The side branch has a diameter Dsb ¼ 33 mm and a
length Lsb ¼ 33 mm. The end of the side branches is closed. The successive T-junctions are connected with aid of standard
ISO-KF clamps and incorporate an O-ring for sealing. The end of each side branch is closed by means of a blank-off flange.
This flange is fixed with the aid of a standard ISO-KF clamp and incorporates an O-ring for sealing. Plugs can be inserted
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Fig. 6. Experimental setup.

Fig. 7. Multiple side branch system.
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into the side branch in order to fill up the side branch and to reduce the T-joint to a straight pipe segment. We will use
these to assess the significance of specific side branches in maintaining whistling. The end walls of four side branches are
supplied with flush mounted microphones.

One end of the multiple side branch system, called outlet, is open to the laboratory (a large room of 15 m� 4 m� 4 m).
The other end, the inlet, is connected to a high pressure air supply system. It consists of a compressor, a 3 m3 vessel filled
with air at 15 bar, a control valve to control the flow through the system, an intermediate cylindrical buffer vessel of 1.23 m
length and 20 cm diameter, a 2.3 m long pipe of 10 cm diameter, a turbine flow meter, a 1.10 m long pipe of 10 cm diameter
and an expansion chamber muffler with diameter Dm ¼ 150 mm and length Lm ¼ 930 mm. Half of the muffler is covered
internally with sound absorbing foam in order to avoid cavity resonances. Nevertheless this muffler is not ideal and
appears to display around 360 Hz a resonant behavior which reduces strongly the whistling amplitudes. The multiple side
branch system is connected to the muffler by a pipe segment of length Lst ¼ 41 mm and diameter Dst ¼ 33 mm. The
upstream edge of this pipe segment has a radius of curvature of Dst=3 which avoids flow separation at the main pipe inlet.
5.2. Instrumentation

The microphones used are piezo-electric pressure transducers PCB 116A. They are linked to charge amplifiers Kistler

5011. These amplifiers are connected to a personal computer via an A/D converter acquisition board National Instruments

NI cRIO-9233. The turbine flow meter Instromet SM-RI-X-K G 250 is used to measure the main flow velocity. It is connected
to a digital counter Systron Donner via an interface designed in our group for the power supply of the flow meter sensor and
for the correction of the pulses given by the flow meter. The temperature of the air is measured within 0:1 3C by means of a
digital thermometer Eurotherm 91e. Its sensor is positioned inside the expansion chamber muffler. In order to study the
passive acoustic response of the multiple side branch system we drive the acoustic field by means of a loudspeaker Eurotec
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59-F 135.03-01F positioned 50 mm in front of the outlet of the system. The loudspeaker, used as sound source, is connected
to a white noise generator Hewlett Packard HOI-3722A via an AIM wideband amplifier WPA 301A.
5.3. Geometrical comparison with a typical corrugated pipe

The geometrically relevant parameters in a corrugated pipe are: the ratio H=W of cavity depth H to cavity width W, the
ratio Hf=c0 of cavity depth H to wavelength c0=f , the ratio l=W of pitch length l to cavity width W, the ratio W=D of cavity
width W to pipe diameter D and the ratio R=W of cavity edge radius R to cavity width W. In our multiple side branch
system Lsb=Dsb (corresponding to H=W in a corrugated pipe) and Lp=Dsb (corresponding to l=W in a corrugated pipe) are of
order unity as in typical corrugated pipes. For the data presented Lsbf=c051 as in corrugated pipes Hf=c051. Concerning
the ratio R=Dsb (corresponding to R=W in a corrugated pipe), we restricted our study to sharp edges, so R=Dsb ¼ 0 as
R=W ¼ 0. Only the ratio Dsb=Dp (corresponding to W=D in a corrugated pipe) is in our case of order unity Dsb=Dp ¼ Oð1Þ
while in most corrugated pipes W=D ¼ Oð10�1

Þ.
6. Acoustic wave propagation in the multiple side branch system

The first step of our study has been to find a simplified model for the acoustic wave propagation in the multiple side
branch system without main flow. For this purpose we made use of the model proposed by Cummings as reported by Elliot
[18]. We also developed a plane wave analytical model based on the low frequency plane wave acoustic model in duct
segments of Dowling and Ffowcs Williams [44]. Binnie [5] had earlier proposed such a model for a multiple side branch
system. We improved it by including visco-thermal damping, radiation losses and end corrections [13,14,15]. The models
have been validated by comparing the theoretical predictions of both models with experimental measurements. Several
experiments have been carried out for characterizing the passive acoustic behavior of the multiple side branch system.
6.1. Analytical models for wave propagation

In Cummings model, to which we will refer as ‘‘Cummings acoustic model (CAM)’’, the effect of the fluid in each cavity is
limited to the compressibility of the cavity in which the pressure is assumed to be uniform and equal to the pressure in the
main pipe [18]. The main pipe acoustic flow grazing along the cavities is assumed to be uniform. The corrugated pipe is
then considered as a straight pipe presenting a side wall reactance to the acoustic field. This reactance has the effect of
decreasing the effective speed of sound ceff along the main pipe. Neglecting the Mach number dependency due to
convective effects we find

ceff ¼ c0
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
V

Sl

r (8)

where c0 is the speed of sound, V is the volume of a corrugation, S is the cross sectional area of the pipe and l is the pitch of
the corrugations.

In order to use this model (CAM) for our multiple side branch system we consider the volume of a corrugation to be the
volume of a single side branch Vsb ¼ pD2

sbLsb=4, the cross sectional area to be the cross sectional area of the main pipe
Sp ¼ pD2

p=4 and the pitch to be the distance between two consecutive side branches Lp. The effective speed of sound ceff in
our multiple side branch system is then given by

ceff ¼ c0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
Vsb

SpLp

s (9)

The second model, to which we will refer as ‘‘plane wave acoustic model (PWAM)’’, has been established by applying
the continuity of mass flow and of pressure at each bifurcation and the perfect reflection condition at the side branch
terminations. The resulting system of 4N equations with 4N þ 2 unknowns, where N is the number of side branches
composing the multiple side branch system, is closed mathematically by imposing two boundary conditions.

At the outlet we impose an unflanged open pipe termination and the loudspeaker is represented by an harmonically
oscillating pressure discontinuity. At the inlet we impose a simple flanged open pipe termination. The fluid inside the
multiple side branch system is at rest. The visco-thermal losses are taken into account as proposed by Kirchhoff [45,46].
The main pipe length is taken including the fluid at the junction. The end corrections for the side branches are taken into
account by adding a correction equal to one-third of the side branch diameter Dsb=3 to the length of the side branches [14].
The more complex theory of Nederveen [13] was not implemented, because the results were already satisfactory.
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Table 1
Predicted and experimental frequencies of the resonance modes of the multiple side branch system (15 side branches).

Mode number Measured frequency, fp
Cummings model (CAM),

jfp � fC j

fp
� 100 Plane wave model (PWAM),

jfp � fPWj

fp
� 100

1 89.7 3.10 1.11

2 181.3 2.02 0.22

3 271.5 2.19 0.29

4 357.7 3.42 1.28

5 454.4 1.77 0.68

6 538.1 3.12 0.20

7 621.1 4.23 0.48

8 704.8 4.98 0.42

9 784.7 6.07 0.43

10 864.8 6.94 0.06

11 927.3 9.71 0.80

12 989.2 12.19 0.85

13 1044.3 15.13 0.55

fp is the measured frequency, fC is the frequency predicted with the Cummings model (CAM) and fPW is the frequency predicted with the plane wave

model (PWAM).
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6.2. Wave propagation results

The experiments to characterize the passive acoustic behavior of the multiple side branch system were performed
without blowing air through the system. The loudspeaker was used as sound source. It was driven by a white noise
generator with a bandwidth of 5000 Hz. Experiments have been done for a variable number of side branches and have been
carried out twice: firstly with the side branch system connected to the muffler and secondly with the system disconnected
from the muffler. The measured resonance frequencies were not affected by the presence of the muffler; however, around
360 Hz the amplitude of the resonance modes have been observed to be affected by the presence of the muffler. This
indicates a problem which also affects the results of whistling experiments (Section 8).

The low frequency resonance modes of the multiple side branch system can be predicted by both the analytical models
(CAM and PWAM). These modes correspond, for the CAM model, to standing waves with a multiple of a half-wavelength
matching the pipe length:

Lmp ¼ n
ceff

2fp
ðn ¼ 1;2;3; . . .Þ (10)

where Lmp is the length of the whole main pipe and fp is the resonance mode frequency.
Higher frequency resonance modes can be accurately predicted only by using the more complex plane wave model

(PWAM). For both models (CAM and PWAM) the accuracy of the prediction increases as the number of side branches
increases. For a system of 15 side branches, the resonance frequencies obtained experimentally are compared in Table 1
with the theoretical predictions of both models (CAM and PWAM). For low frequencies an accuracy of 1 percent is achieved
with the plane wave model (PWAM). With the simplified model based on the effective speed of sound (CAM) we have for
the first six modes about 3 percent accuracy. As expected from the earlier analysis of Binnie [5] one observes at high
frequencies zones in which there is no wave propagation. Such zones are also found in periodic systems such as crystals
and they correspond to forbidden energy levels in electrical conduction of solids [47]. This behavior is only predicted by the
plane wave model (PWAM).

7. Acoustic flow within a T-junction and sound production

In corrugated pipes and in the multiple side branch system considered, the cavities/side branches are shallow compared
to the acoustic wavelength. This implies that, in contrast with the cross configuration discussed above (Section 3), the
acoustic field is not dominated by acoustic waves due to the compressibility of the cavities/side branches but it is
dominated by waves traveling along the main pipe. As we will see later (Section 10), this is in agreement with the result
that the sound in mainly produced at pressure nodes in the standing wave pattern along the main pipe.

Globally, we can describe the acoustic field in terms of plane waves traveling at a modified speed of sound ceff along a
uniform pipe (Section 6.1). Locally, however, the acoustic flow is very complex. Around the pressure nodes the acoustic
flow is an oscillating potential flow grazing along a cavity. In Fig. 8a we show a sketch of the streamlines of this acoustic
flow. In such a potential flow the sharp edges of the cavity are singularities at which the acoustic velocity becomes locally
infinitely large. Further away from the wall the acoustic streamlines, which are initially (upstream of the upstream edge)
parallel to the main pipe axis, bend around the upstream edge. In the middle of the cavity the streamlines bend back, up to
be again parallel to main pipe axis. Finally they turn around the downstream edge and they end up parallel to main pipe
axis (downstream of the downstream edge).
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Fig. 8. Streamlines of the acoustic velocity field for the case of acoustic flow directed along the main pipe (a) and qualitative representation of the

x-dependence of the vertical component of the acoustic velocity at the junction between the main pipe and the side branch (b).
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The magnitude of the acoustic velocity is higher near the edges of the junction than in the middle of the cavity. As the
vorticity ~o in the shear layer is mainly convected along a path corresponding to the unperturbed shear layer (straight line
connecting the upstream and the downstream edges), we see from Eq. (5) that acoustic energy will be produced
or dissipated around the upstream and downstream edges because the acoustic velocity ~u 0 has a large amplitude
and a component directed normal to the flow velocity ~u, so that ð~o � ~uÞ � ~u 0a0. Note that the normal component of the
acoustic velocity has, for a given instant in time, near the downstream edge a sign opposite to that near the upstream edge
(Fig. 8b).

As observed by Nelson et al. [48], Stokes and Welsh [49] and Bruggeman et al. [23] a new vortex is shed at the upstream
edge each time the acoustic velocity changes direction in the main pipe from upstream to downstream. We choose this as
the origin of time t ¼ 0. Since the vector ~o � ~u is directed towards the inside of the cavity, at this moment ð~o � ~uÞ � ~u 040,
so that sound is absorbed. The vortical perturbation generated at the upstream edge by flow separation is amplified by the
shear layer instability as it is convected towards the downstream edge. It will produce sound near the downstream edge if
it arrives there when the local acoustic velocity ~u 0 has a component directed outwards from the cavity. This condition is
actually achieved during the first half-oscillation period after the initial vortex shedding, so for 0otoT=2. When the flow
velocity is sufficiently large this occurs and yields the first hydrodynamic mode of the grazing acoustic flow configuration.

Assuming that the vorticity is concentrated into a point vortex growing linearly in time and convected at constant
velocity along a straight line, yields the predicted acoustic source power /PsourceS obtained by Bruggeman et al. [23]
and shown in Fig. 9. In his model, Bruggeman et al. [23] consider a two-dimensional flow with side branch cross sectional
area Ssb equal to the main pipe cross sectional area Sp. We see from this result that the optimal Strouhal number for
sound production by the first hydrodynamic mode of the cavity with grazing acoustic flow is SrWeff ffi 0:13. The
model of Bruggeman et al. [23] is not realistic because it dramatically overestimates the acoustic power generated at
SrWeff ffi 0:13.

More realistic results are provided by the numerical calculations carried out by Hofmans [26]. In his calculations,
Hofmans [26] considers a two-dimensional flow with side branch cross sectional area Ssb equal to the main pipe cross
sectional area Sp. For a single T-joint, using the vortex sound theory of Howe [28], Hofmans [26] calculated the
dimensionless time-averaged acoustic source power /PsourceS=ðr0U2ju0jSpÞ as a function of the Strouhal number based on
the effective cavity width SrWeff for the case of acoustic flow directed along the main pipe. The numerical simulations were
performed solving the flow at a two-dimensional T-joint by means of a frictionless incompressible flow model (vortex blob
method). The acoustic velocity was imposed as an oscillating boundary condition. Calculations were carried out for an
acoustic velocity amplitude to main flow velocity ratio ju0j=U ¼ 0:2.

The results of the calculations carried out by Hofmans [26] are presented in Fig. 10. We observe here a second
hydrodynamic mode around SrWeff ffi 0:6. Furthermore the first hydrodynamic mode is predicted for SrWeffr0:1 and it is
weaker than the second hydrodynamic mode.

It is interesting to note that the first hydrodynamic mode corresponds to only a quarter of a hydrodynamic wavelength
in the cavity width. Hence, following the linear theory (Section 4), the amplification due to the hydrodynamic instability of
the shear layer is only ðe2pÞ1=4

ffi 5 for the first mode, while it is ðe2pÞ5=4
ffi 2:5� 103 for the second hydrodynamic mode.

The weakness of the first hydrodynamic mode and the optimal Strouhal number SrWeff ffi 0:6 for the second hydrodynamic
mode predicted by Hofmans [26] have been recently confirmed by the two-dimensional DNS calculations of Martı́nez-Lera
et al. [50]. A third hydrodynamic mode is predicted around SrWeff ffi 1:1 but it can occur only if the shear layer is
sufficiently thin to obtain a hydrodynamic instability (Eq. (7)).
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Fig. 9. Dimensionless time-averaged acoustic source power as a function of the Strouhal number based on the effective cavity width for acoustic flow

directed along the main pipe. Results of the point vortex model proposed by Bruggeman et al. [23].

Fig. 10. Dimensionless time-averaged acoustic source power as a function of the Strouhal number based on the effective cavity width for acoustic flow

directed along the main pipe. Results of the numerical simulations carried out by Hofmans [26].
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8. Whistling experimental results of the multiple side branch system

When air is blown through the multiple side branch system whistling is observed. Several experiments have been
carried out for a variable number of side branches.

The whistling frequency shows a stepwise increase with the flow velocity, different acoustic modes of the system being
excited consecutively. The whistling frequencies observed in the experiments are close to the resonance frequencies of the
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Fig. 11. Measured whistling frequency as a function of flow velocity and acoustic modes calculated by means of the analytical models (CAM and PWAM)

for a system of 15 side branches.
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system (Section 6). In Fig. 11 we present the measured whistling frequency f as a function of the flow velocity U for a
system of 15 side branches and the acoustic modes of the system as calculated by means of the two analytical models
(CAM and PWAM) presented in Section 6.1. It is interesting to note that, as often observed in corrugated pipes, whistling is
absent at the lowest acoustic mode [1,2,4,5,9,11].

The flow induced whistling observed in our multiple side branch system at low velocities (below 30 m/s) occurs around
a critical Strouhal number based on the effective cavity width in the range 0:5oSrWeffo0:65. This range corresponds to the
second hydrodynamic mode of the cavity with grazing acoustic flow predicted by theory (Section 7). Furthermore we
observe that upon increasing the flow velocity above 30 m/s, a hydrodynamic mode with a different Strouhal number is
excited. We will focus on the range below this critical velocity.

The Strouhal critical number SrWeff remains almost constant when the velocity changes and when the number of side
branches is changed. For whistling at the lowest excited acoustic mode, a maximum of the acoustic amplitude is found at

SrWeff ¼
fWeff

U
¼ 0:6 (11)

where f is the whistling frequency, Weff is the effective cavity width and U is the flow velocity.
In typical corrugated pipes the critical Strouhal number based on the cavity width SrW is also almost constant. The

typical values of critical Strouhal number based on the cavity width for corrugated pipes (Fig. 13, [10]) are lower than the
values based on the effective cavity width for our multiple side branch system:

SrW ¼
fW

U
¼ 0:4 (12)

This difference can be due to geometrical differences between the corrugated pipes and our multiple side branch system. In
particular we expect the ratio of cavity width to pipe diameter (W=D in corrugated pipes and Weff=Dp in the multiple side
branch system) to be crucial. As discussed in Section 5.3 this is a geometrical parameter that is considerably different
between a corrugated pipe and our multiple side branch system.

Binnie [5] carried out experiments in which he reduced the effective pipe diameter of a corrugated pipe by inserting a
rod in the main pipe along the pipe axis. He observed a similar increase in critical Strouhal number from SrL ¼ 0:38 (it is
not clear whether L is the pitch l or the cavity width W) up to SrL ¼ 0:75 as W=D was increased from W=D ¼ 0:46 up to
W=D ¼ 1:28.

Belfroid et al. [10] carried out experiments with various corrugated pipes. In these experiments the observed critical
Strouhal numbers were in the range 0:3rSrWr0:5 for the second hydrodynamic mode. Furthermore, whistling was
reported at very high flow speed for Strouhal around SrW ¼ 0:1. This would correspond to the first hydrodynamic mode.
However, the dimensionless amplitudes were very low and the whistling quite unstable.

One should further investigate the effect of the ratio of cavity width to shear layer momentum thickness on the critical
Strouhal number. This ratio is much larger in the multiple side branch system than in typical corrugated pipes.
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In Fig. 12 we present the measured dimensionless pressure fluctuation amplitude as a function of the Strouhal number
based on the effective cavity width SrWeff for a system of 15 side branches. This dimensionless amplitude is defined as the
amplitude of the standing pressure wave at a pressure antinode inside the main pipe jpmax

0 j divided by the air density r0,
the speed of sound c0 and the main flow velocity U. This dimensionless pressure fluctuation amplitude jpmax

0 j=ðr0c0UÞ ¼

Oð10�2
Þ is of the same order of magnitude as that observed for a corrugated pipe with sharp edged corrugations, presented

in Fig. 13 [10]. In this case the corrugated pipe diameter is D ¼ 49 mm. The corrugation width is W ¼ 4 mm. The
corrugation depth is H ¼ 4 mm. The pitch of the corrugations is l ¼ 12 mm. The total pipe length is Ltot ¼ 3:038 m.
Fig. 12. Measured dimensionless pressure fluctuation amplitude as a function of Strouhal number based on the effective cavity width for a system of 15

side branches.

Fig. 13. Dimensionless pressure fluctuation amplitude as a function of Strouhal number based on the cavity width for a corrugated pipe with sharp edged

corrugations. TNO data measured at a static pressure of 4 bar [10].
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Whistling as shown in Fig. 13 [10] was obtained at a static pressure of p0 ¼ 4 bar. More details of the experimental setup
and the measuring procedure are given by Belfroid et al. [10]. Note that when the edges of the corrugations are rounded
Belfroid et al. [10] found dimensionless amplitudes of magnitude jpmax

0 j=ðr0c0UÞ ¼ Oð10�1
Þ.

9. Energy balance for prediction of the whistling amplitude

As already stated in Section 4, linear theory cannot explain the occurrence of a stable whistling with finite amplitude
[23,42,43]. This is a consequence of the fact that acoustic energy losses /PlossS are quadratic in the acoustic amplitude
ju0j=U. If the vorticity perturbation is linear in ju0j=U, the acoustic source power /PsourceS will also be quadratic in ju0j=U.
This implies that when /PsourceS balances /PlossS the system is neutrally stable and can have any amplitude ju0j=U. A very
small increase in the losses is sufficient to make the system stable, killing the whistling. Therefore low amplitude
oscillations are unstable. Such a behavior is indeed observed for the so-called low amplitude regime, as defined by
Bruggeman et al. [23] ju0j=U ¼ Oð10�3

Þ.
At moderate amplitudes, such as ju0j=U ¼ Oð10�1

Þ, the shear layer vorticity is concentrated into discrete
vortices [23] and becomes insensitive to the value of the acoustic amplitude. Therefore the acoustic source power
/PsourceS becomes, at a given Strouhal number, linearly proportional to ju0j=U. The system displays for moderate
amplitudes a stable oscillation.

In our measurements we obtained whistling amplitudes of the order of ju0j=U ¼ Oð10�2
Þ, which is intermediate between

low and moderate amplitudes. This implies that it will be extremely difficult to predict the whistling amplitude. We,
however, decided to make an attempt by assuming a moderate amplitude behavior. The price we have to pay for this is
that we cannot predict the disappearance of a whistling mode. Our theory always predicts whistling.

The energy balance model (EBM) is a single mode model, so that the acoustic field in the multiple side branch system is
considered as dominated by a single standing acoustic wave. The main idea of the model is that the acoustic source power
driving this acoustic mode has to be balanced by the corresponding dissipated acoustic power. The acoustic mode
considered in our model (EBM) is the first whistling mode, corresponding to a standing wave with a wavelength matching
the main pipe length f ¼ ceff=Lmp.

In our prediction multiple side branch system, the wavelength of the lowest whistling modes is long compared to the
side branch length. This means that the whistling is driven by the longitudinal acoustic field along the main pipe and that
the component of the acoustic flow directed inside the side branches can be neglected. With this assumption, as introduced
in Section 7, the acoustic source power due to vortex shedding at each side branch can be evaluated by means of the
numerical simulations of Hofmans [26] (Fig. 10).

In our prediction model (EBM) we use the results of these numerical simulations, extrapolating the time-averaged acoustic
source power /PsourceS towards low amplitudes by assuming a linear relationship between /PsourceS and ju0j=U power.

Assuming this linear relationship and considering the second hydrodynamic mode, corresponding to a critical Strouhal
number SrWeff ¼ 0:6, we obtain for a single side branch element:

/PsourceSsb

r0U2ju0jSp
¼ 1:66� 10�2

¼ K (13)

For the first whistling mode, the longitudinal acoustic velocity field inside the multiple side branch system is given by

u0 ¼
jpmax
0 j

r0ceff
cos

2p
Lmp

x

� �
(14)

where x is the abscissa coinciding with the main pipe axis (x ¼ 0 is at the main pipe inlet). This equation also defines jpmax
0 j

as the pressure amplitude at a pressure antinode of the standing wave.
The time-averaged acoustic source power generated by the whole multiple side branch system at SrWeff ¼ 0:6 can be

then calculated by a summation of the time-averaged acoustic source power generated by each side branch:

/PsourceS ¼
XN

i¼1

Kr0U3Sp cos
2p
Lmp

xi

� �����
���� c0

ceff

jpmax
0 j

r0c0U
(15)

where xi is the abscissa of the i-th side branch and N is the total number of side branches.
In order to satisfy the energy balance of the whole multiple side branch system the time-averaged acoustic source

power has to be equal to the time-averaged acoustic losses. Losses are due to the radiation of acoustic waves, the visco-
thermal dissipation (heat transfer and friction) and the vortex shedding at the open termination of the main pipe. We will
consider each dissipation mechanism separately assuming that they are all independent.

For the first whistling mode considered here the radiation losses at the outlet of the system (unflanged open end) are
negligible compared with the other losses. The radiated power at the inlet can be calculated from the acoustic intensity at
the inlet [46]. The time-averaged acoustic power radiated is given by

/PradS ¼ Sp/IinletS (16)

We assume a perfect standing wave with effective speed of sound ceff along the main pipe of the multiple side branch
system. At resonance conditions, the longitudinal standing wave is built up of a wave traveling in the positive direction pþ
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and a wave traveling in the negative direction p�. Assuming that the sound absorbing foam in the muffler acts as an
anechoic termination, the reflection coefficient for waves traveling from the main pipe inlet towards the muffler is given by

Rinlet ¼
pþinlet

p�inlet

¼
D2

p � D2
m

D2
p þ D2

m

(17)

Hence the time-averaged radiation losses at the inlet are given by

/PradS ¼
1

2
ð1� R2

inletÞr0

c2
0

ceff
U2Sp

� 	
jp�j

r0c0U

� �2

ffi
1

8
ð1� R2

inletÞr0

c2
0

ceff
U2Sp

� 	
jpmax
0 j

r0c0U

� �2

(18)

In the last equation we assumed that the standing wave pattern is built up of a pþ and a p� traveling wave of almost equal
amplitude, so that pmax

0 ffi 2p�.
The visco-thermal losses [46] are due to the losses inside the main pipe /Pv�th mS and inside each side branch

/Pv�th sbS. In order to calculate the acoustic power dissipated by the visco-thermal damping of acoustic waves in the main
pipe of the system, we assume a standing wave built up of a pþ and a p� traveling waves of equal amplitude pmax

0 ffi 2pþ.
The acoustic power lost by the wave traveling in the positive direction /Pþv�th mS after traveling along the whole main pipe
is equal to the difference in acoustic power flow between the inlet /IþinletS and the outlet /IþoutletS. The total power loss is
twice this value because we have two traveling waves of equal amplitude:

/Pv�th mS ¼ 2Sp½/IþinletS�/IþoutletS� (19)

The acoustic power loss by visco-thermal dissipation in the main pipe of the multiple side branch system is then given by

/Pv�th mS ¼ 2r0

c2
0

ceff
aLmpSpU2

� 	
jpþj

r0c0U

� �2

ffi
1

2
r0

c2
0

ceff
aLmpSpU2

� 	
jpmax
0 j

r0c0U

� �2

(20)

where a is the acoustic damping coefficient in the main pipe.
The visco-thermal losses in each side branch are calculated assuming perfect reflection at the side branch end-wall. The

total power loss in each side branch is then equal to twice the power lost by the incoming wave pþmain traveling along the
whole side branch:

/Pv�th sbS ¼ 2Ssb½/IþmainS�/IþwallS� ¼ ½2r0c0aLsbSsbU2�
jpþmainj

r0c0U

� �2

(21)

where Ssb is the cross sectional area of the side branch and /IþmainS and /IþwallS are the acoustic power fluxes at the main
pipe section and at the end-wall, respectively. The expression of the visco-thermal losses in each side branch can be
rewritten in terms of the amplitude of the standing wave inside the main pipe of the multiple side branch system
2pþ ffi pmax

0 sinð2pxi=LmpÞ. The total visco-thermal losses in all the side branches is then:

/Pv�th sbSffi
XN

i¼1

1

2
r0c0 sin2 2p

Lmp
xi

� �����
����aLsbSsbU2

� 	
jpmax
0 j

r0c0U

� �2

(22)

where a is the acoustic damping coefficient in the side branches.
The acoustic damping coefficient a is calculated following the theory of Kirchhoff [45,46]:

a ¼
L2p

2Scc0

ffiffiffiffiffiffiffiffiffi
pfm
r0

s
1þ

g� 1ffiffiffiffiffi
Pr
p

� �
(23)

where L2p is the perimeter of the pipe, Sc is its cross sectional area, c0 is the speed of sound, f is the sound wave frequency,
m is the dynamic viscosity, r0 is the density, g ¼ cp=cv is the ratio of specific heat capacities and Pr is the Prandtl number.

For acoustic losses due to vortex shedding at the downstream main pipe termination we do not describe the flow in
detail. We use a simpler theory, assuming a quasi-steady free jet formed at the outlet of the main pipe. According to Ingard
and Singhal [51] the acoustic energy reflection coefficient is in that case:

/I�outletS
/IþoutletS

¼
1�M

1þM

� �2

(24)

where M ¼ U=ceff is the Mach number of the flow inside the main pipe of the system. The time-averaged acoustic losses
due to vortex shedding at the outlet of the multiple side branch system are given by

/PvortS ¼ Sp½/IþoutletS�/I�outletS� ¼
1

2
r0

c2
0

ceff
U2Sp

4M

ð1þMÞ2

 !" #
jpþj

r0c0U

� �2

(25)

Assuming to be in the incompressible limit M51 and rewriting the expression of the vortex shedding losses in terms of the
amplitude of the standing wave inside the main pipe of the multiple side branch system pmax

0 ffi 2pþ we obtain

/PvortSffi
1

2
r0

c2
0

ceff
U2SpM

� 	
jpmax
0 j

r0c0U

� �2

(26)
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In order to obtain the dimensionless amplitude jpmax
0 j=ðr0c0UÞ of the acoustic field inside the system, the time-averaged

acoustic source power has to be balanced by the time-averaged acoustic losses:

/PsourceS ¼ /PradSþ/Pv�th mSþ/Pv�th sbSþ/PvortS (27)

As shown in Table 2, above 11 side branches the measured pressure fluctuation amplitude is about a factor four lower
than the amplitude predicted by means of the energy balance (EBM). This difference can be explained partially by the
expected deviation of our system from a two-dimensional geometry. Bruggeman et al. [23] observed, for a single side
branch system with circular cross section, whistling amplitudes which were about a factor two lower than for square cross
section. Moreover, the model (EBM) has been established by assuming a moderate amplitude behavior that is not expected
to be accurate at the low amplitudes observed in our system. An important aspect to note is that the models for energy
losses at the upstream and downstream ends of the main pipe are very crude. In particular the upstream muffler displays
resonances, which significantly influence the energy balance around f ¼ 360 Hz. We see from Fig. 12 that the second and
the third whistling modes are weaker than the first, while our theory would predict a monotonous increase of the
whistling amplitude with increasing frequency. We also see from Table 2 that upon reduction of the number of side
branches the measured whistling amplitude decreases as we approach 360 Hz (Section 5). Finally the damping model does
not take possible contributions from turbulence into account.
Table 2
Predicted and experimental dimensionless pressure fluctuation amplitude jp0 j=ðr0c0UÞ ¼ ju0 j=U of the first whistling acoustic mode ðn ¼ 2Þ.

Number of side

branches

Whistling

frequency, f

Strouhal number,

SrWeff

Measured

amplitude �102

Predicted amplitude

(EBM) �102

8 328.1 0.60 0.47 5.34

9 293.1 0.62 0.81 5.42

10 266.7 0.61 0.76 5.58

11 245.1 0.59 1.40 5.85

12 226.7 0.58 1.90 6.10

13 210.3 0.58 1.60 6.13

14 194.7 0.60 1.46 5.99

15 183.1 0.61 1.80 6.02

16 172.1 0.61 1.55 6.25

17 161.4 0.61 1.56 6.05

18 153.8 0.60 1.56 6.16

Fig. 14. Dimensionless pressure fluctuation amplitude as a function of Strouhal number based on the effective cavity width measured plugging the side

branches near the pressure nodes (circles) and near the pressure antinodes (stars). System of 15 side branches.
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10. Regions of sound production

The localization of the regions of the corrugated pipes where the sound is produced is a matter of current debate [11].
Our model (EBM) predicts for the multiple side branch system that the sound production is dominant within regions of
high grazing acoustic velocity. These regions are located around the acoustic pressure nodes of the standing wave along the
main pipe (acoustic velocity antinodes). This is confirmed by our experiments (Fig. 14) in which we consider the first
whistling mode f ¼ ceff=Lmp. The contribution of specific side branches in our system was evaluated by plugging these side
branches. As shown in Fig. 14, when the three side branches near the pressure nodes of the second acoustic mode (first
whistling mode) are plugged the whistling amplitude decreases by an order of magnitude. Plugging the two side branches
near the pressure antinodes only slightly affects the whistling amplitude.

11. Conclusions

In the present paper we have studied the whistling behavior of a multiple side branch systems with shallow side
branches. This system is interesting by its own and it appears to have similitudes with corrugated pipes.

The great advantage of the multiple side branch system is its versatility in terms of changes in geometry, which can be
obtained for instance by inserting plugs into the side branches. We used this feature in order to identify the location of the
sources of sound in the system.

The low frequency resonance modes of the multiple side branch system can be predicted by assuming an effective
sound propagation speed along the main pipe of the system (CAM) as proposed by Cummings [18]. The accuracy of this
prediction increases as the number of side branches increases. Higher frequency resonance modes can accurately be
predicted by using a plane wave model (PWAM).

A prediction model (EBM) for the whistling behavior has been proposed, which is based on the energy balance between the
acoustic sources and the acoustic losses. The grazing acoustic flow is assumed to be dominant. The model does predict
the observed Strouhal number SrWeff ¼ 0:6 but overestimates the pressure fluctuation amplitude by a factor four. One of the
interesting results is that the observed whistling corresponds to the second hydrodynamic mode of the grazing flow rather than
the first hydrodynamic mode.

The prediction of the amplitude is particularly difficult in a system displaying acoustic velocity fluctuations much lower
than the main flow velocity as found here ju0j=U ¼ Oð10�2

Þ. In view of the many crude assumptions used in our energy
balance model (EBM), it is not surprising that the amplitude prediction is poor.

The energy balance model (EBM) predicts that the sound production occurs mainly in regions of high grazing acoustic
velocity, around the pressure nodes of the standing wave along the main pipe. This is confirmed by our experiments.

Further research is now needed to assess the effect of the cavity width relative to the main pipe diameter on the critical
Strouhal number reported by Binnie [5] and the effect of the ratio of cavity width to momentum thickness on the Strouhal
number. We should furthermore explore the effect of rounded edges of the T-junctions. Rounding the upstream edges is
expected to increase significantly the whistling amplitudes [10].
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